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Abstraet--A theoretical investigation was carried out on the heat transfer characteristics of an oscillating 
flow in a circular pipe. In contrast with the earlier studies on similar topics, the nonlinear temperature 
boundary condition, more precisely sinusoidal temperature distribution, was considered in this study. For 
this specific case, the present study revealed the existence of two important parameters and the occurrence 
of three distinct regimes. The detailed characteristics of the section-averaged temperature, the wall heat 
flux and the Nusselt number are presented and addressed. Since the general distribution of the temperature 
at the cylinder wall can be expanded in a Fourier series, it is of fundamental nature to analyze the case 
with sinusoidal temperature distribution. The superposition principle would then allow for the use of 

present basic analysis for more practical systems. 

1. INTRODUCTION 

The mass transfer augmentation in the axial direction 
due to pulsatile or oscillatory flow in a duct has been 
discussed by Chatwin [1] and Watson [2] among many 
others. These studies have provided much useful infor- 
mation in understanding transport phenomena in the 
respiratory and circulatory organs of the human body. 
Based on the analogy between heat and mass transfer, 
Kurzweg [3-5] observed that oscillatory flows in the 
tube or channel also enhance the longitudinal heat 
transfer for the case of a constant wall temperature 
gradient. In his work, the augmentation of axial heat 
transfer is caused not only by the two dimensionality 
of the velocity profile which enhances the mass trans- 
fer, but also by the; periodic heat absorption-release 
effect of the duct wall. Later, Gedeon [6] derived the 
friction coefficients and the heat transfer coefficients 
using the solution of Kurzweg [4] and showed that 
there occurs a pha,;e lag between temperature differ- 
ence and heat flux at a high frequency oscillation 
within a parallel-plate channel. Lee [7] had formerly 
investigated a phenomenon similar to the result of 
Gedeon through the analysis on the unsteady heat 
transfer in a cylinder with periodically varying pres- 
sure. 

Peattie and Budwig [8] measured the effective axial 
heat conductivity in a pipe the radius of which varies 
along the axis. Considering the viscous dissipation 
and the finite wall thickness, Kaviany [9] observed the 
longitudinal heat diffusion by oscillatory flow in a 
pipe. 

A recent interest in the Stifling-cycle machines 

tAuthor to whom correspondence should be addressed. 

brings the results of these studies into a main stream 
of analyses on the Stirling-cycle machines. Korn- 
hauser and Smith [10] applied the results of Gedeon 
[6], Lee [7] and so forth to the analysis on the gas 
spring of a free-piston Stifling engine. The studies of 
Lee [7] and Kornhauser and Smith [I0] are further 
extended by Wang and Smith [11] to account for the 
heat transfer losses at cylinders. The above-mentioned 
studies however considered the cases of nearly iso- 
thermal or adiabatic outer surfaces. In these cases, the 
solid walls have linear temperature profiles. Prac- 
tically, the wall of the heat exchanger in a Stifling- 
cycle machine is not adiabatic or isothermal but 
exposed to a nonlinear temperature condition. Fur- 
thermore, the heat transfer in these heat exchangers is 
governed not only by the oscillation frequency but 
also by the swept length of the fluid. Nevertheless 
most of the above-mentioned studies focus mainly on 
the effect of the oscillation frequency. As a result, the 
earlier studies on the Stirling-cycle machines are of 
limited applicability because neither the nonlinear 
temperature distribution nor the influence of the swept 
length was accounted for. 

For the practicality, an investigation of the heat 
transfer at the heat exchangers of a Stirling-cycle 
machine should take account into the case where the 
axial gradient of the wall temperature varies along 
the longitudinal direction. In addition, both the mean 
temperature difference and the Nusselt number should 
be obtained as a function of the swept length as well 
as the oscillation frequency. 

In the present work, the heat transfer characteristics 
of an oscillating pipe flow with sinusoidal wall tem- 
perature distributions are analyzed, and the influences 
of the oscillation frequency and the ratio of the swept 
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N O M E N C L A T U R E  

C,.k function of 2 defined in equation (18) 
Cr thermal capacity ratio of fluid to wall 

defined in equation (A12) 
cp specific heat [J/kg°C] 
9k temperature profile function defined in 

equation (19) 
#f temperature profile function of fluid 

defined in equation (A2) 
9w temperature profile function of wall 

defined in equation (A3) 
h, temperature profile function defined in 

equation (14) 
i imaginary number, x ~  
Lc conduction length scale, toLsRZ/K Ira] 
Ls swept length [m] 
Lw period of sinusoidal wall temperature 

distribution [m] 
NuD Nusselt number 
Pr Prandtl number 
qa dimensionless advected energy 
qw dimensionless wall heat flux defined in 

equation (24) 
R inner radius of pipe [m] 
Ro outer radius of pipe [m] 
r radial coordinate [m] 
T temperature [°C] 
T~ amplitude of sinusoidal wall 

temperature distribution [°C] 
u velocity [m s -1] 
x dimensionless axial coordinate, 

2ztz / L~ 
z axial coordinate Ira]. 

Greek symbols 
ct Womersley number, R o x ~  
fl modified Womersley number, ~x/-P~ 
6 ratio of wall thickness to inner radius of 

pipe 
7 axial gradient of wall temperature 

distribution [°C m-l]  
q dimensionless radial coordinate, r/R 
~c thermal diffusivity [m 2 s-l] 
2 swept length ratio, ~zLs/2Lw 
/~ thermal conductivity ratio of fluid to 

wall 
v kinematic viscosity [m 2 s- i] 
0 dimensionless temperature, T/Ta 
p density [kg m -3] 
tr thermal diffusivity ratio of fluid to wall 
z dimensionless time, tot 

dimensionless axial coordinate fixed to 
a fluid element, x -  22 sin r. 

Superscripts 
Real[ ] real component of a complex number 
( ) section averaged quantity, 

<f> = SAfdA/A 
- time averaged quantity, f =  S:o~fdz/2~ 
' radial gradient at q = 1,f" = dfldq(1) 
* complex conjugate. 
o renormalized quantities. 

Subscripts 
f fluid 
w wall. 

length to the characteristic length of the wall boundary 
condition have been investigated. In our theoretical 
approach the two dimensional (2D) unsteady energy 
equation is solved with an assumption of a uniform 
axial velocity at a cross section. The uniform velocity 
profile corresponds to a limiting case of Pr << 1 and 
the heat transfer characteristics in this case do not 
deviate much from those for a moderate value of Pr, 
as evidenced in Fig. 1. Figure 1 depicts the advected 
energy in a cycle by an oscillating flow subjected to a 10 ° 
linear wall temperature distribution, which is orig- 
inally obtained by Kurzweg [5] and reconstructed here 
in terms of fl (fl = ~ x f ~ ,  where ~t = R~/to/v is the ~ 10-2 
Womersley number). From this figure, it is noted that ~. 
for a fixed value of fl the dependence of the advected 
energy on Prandtl number is not great for Pr < 1. " ~  l o ~ 
Consequently, the solution with uniform velocity 
assumption can successfully predict the heat transfer 
in real situations with 2D velocity profile. The validity 
of this assumption is discussed more precisely in the 
Appendix. 

The outcome of the present analysis is expected to Fig. 1. 
provide basic information on the effect of the swept 

length and explain the characteristics of the heat trans- 
fer with nonlinear wall temperature distributions. 
Furthermore, this investigation with sinusoidal 
temperature distribution can figure out several key 
features of the practical heat transfer with the tem- 
perature conditions of general types when aided by 
the superposition principle, because the general tem- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i ................................... i . . . . . . . . . . . . . . . . .  

i i Pr=1.0 
~ 1  O0 ............... 

1 0  6 i 
0.01 0.1 10 1 O0 

Advected energy with respect to the modified 
Womersley number in the case of Cr ~ oo. 
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Swept distance, L 

< Oscillating Flow 
I I ~ l l l l l l l l l l l l l l [ l l / / / / / / / l l l A  

circular pipe of radius R 

Lw I t . J  

t 
2 

Fig. 2. Oscillating flow in a circular pipe subjected to a 
sinusoidal wall temperature distribution. 

perature distribution can be expanded in a Fourier 
series. 

2. ANALYSIS 

Consider an infinitely long circular cylinder of 
radius R, the wall temperature of which is uniform 
circumferentially but varies in a sinusoidal manner 
along the axis, as shown in Fig. 2. A fluid entrapped 
in the cylinder oscillates with a given frequency by 
means of a certain external force. The oscillating flow 
and relevant heat transfer are considered to be laminar 
and repeating periodically. Strictly speaking, the wall 
temperature is prone to fluctuate from its imposed 
profile in response to the flow oscillation. However, 
Kaviany [9] sugge,;ts that when the heat capacity of 
the wall is much larger than that of the fluid the 
timewise variation of  the wall temperature at a given 
cross section is negligibly small. Therefore, it is reason- 
able to assume that the wall temperature is inde- 
pendent of time arid remains at its sinusoidal distri- 
bution. The validity of this assumption is more 
rigorously assessed in this study and the detailed dis- 
cussion is presented in the Appendix. 

The present work aims at analyzing the influence of 
longitudinally nonlinear distribution of wall tem- 
perature on the heat transfer. As mentioned earlier, 
the results so obtained will serve as a fundamental tool 
to deal with general nonlinear temperature conditions 
with the aid of the superposition principle. 

Particularly, we restrict our attention to the case of 
Lw >> R (see Fig. 2). Then, the governing equation 
may be simplified as 

~ T + u ~ = K ~  ~ (r~T'~ 

<:,c~-~-'T : o  = 0 TI,:. = Tasin(2nztLw) (I) 

where L~ is the characteristic length of the wall tem- 
perature distribution. In the above, the axial con- 
duction was neglected considering Lw >> R. 

Now, we assume that the radial distribution of the 
velocity is uniform as discussed previously. For  the 

present problem, the swept length of the fluid, Ls, 
plays an important role of  process parameter. Hence, 
for a given Ls, a constraint, S02"/'° lul dt = 2Ls, can be 
utilized in constructing the transient velocity field, 
which yields 

Zso9 
u = - ~ -  cos cot (2) 

where co represents the angular frequency of the flow 
oscillation. 

Next, the governing equation and boundary con- 
ditions are rendered dimensionless by introducing the 
following quantities : 

T z r 
0 = ~ a  z = o g t  x = 2 n ~  t / = ~ .  (3) 

Equation (1) then becomes 

00 00 
/3~ ~ + 2fl22 cos z Ox - (4) 

where 

r/Oq q 

~0 = 0  Ol.=l ~ -Ow=s inx  (5) 

nLs 
fl = R 2 - 2Lw" (6) 

Obviously, two important dimensionless numbers, 
i.e./3 and 2, are introduced ;/3 stands for the modified 
Womersley number (/3 = ~tx/~,  where ~t is the 
Womersley number) which is a ratio of the radius to 
the thickness of the Stokes' thermal boundary layer, 
and 2 is associated with a ratio of the swept length to 
the characteristic length of wall temperature distri- 
bution. Conceptually, 13 and 2 represent two different 
aspects of the flow oscillation, i.e. how frequent or 
how far is the flow oscillation. 

Equations (4) and (5) can be converted into more 
tractable forms by employing a Lagrangian coor- 
dinate 

= x -  22 sin z. (7) 

As a result of transformation, we have 

:i ~oo l=l=l ~: ~0'~ (8) 

00 = 0  O],=]=Ow=sin(~+22sinr). (9) 
~ q = 0  

The exact solution to equations (8) and (9) can be 
determined from the Fourier analysis, or 

0 = Real e in" . (10) 
r l=  

The boundary condition (9) is also expanded in a 
Fourier series, using the special formulae listed below 
[12], 
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[cos (22 sin z) = J0 (22) + 2 ~ J2k(22) COS (2kz)] 
k = l  

sin (22 sin z) = 2  ~ J2k_1(22) sin{(2k--1)z} (11) 
k=J 

such that 

[sin n  0w = (sin ¢)Jo(22) +2  Real J2,(22) e i2m 
1 

- i c o s ¢  n = l  ~ J 2 n - l ( 2 ~ ) e i ( 2 n - l ) ~ ]  ( 1 2 )  

where J,(x) is the first kind of Bessel function of 
order n. 

Substituting equation (10) into equation (8) and 
imposing the boundary condition equation (11), we 
have 

0 = (sin ~)J0(22) + 2 Real[sin ~.=1 ~ h2"J2"(22) ei2"~ 

- i c o s ~  n=l ~ h2"-IS2"-l(Z)]')ei(2"-l)*] (13) 

where 

h , = I ° ( f l  i x / ~ )  
I0 (flx/~) (14) 

and I,(z) is the first kind of the modified Bessel func- 
tion of order n. Though expressed in a compact form, 
the above solution needs to be rephrased with respect 
to x and z for the purpose of time- and section-aver- 
aging at a given fixed point. Therefore, equation (13) 
is transformed into the Eulerian form merely by letting 

= x - 2 2 s i n z  in equation (13), to yield 

0 = sin ( x -  22 sin Z)Jo (22) 

+ 2 Real[sin ( x -  22 sin z).=~1 hE.J2.(22)e '2"~ 

- i cos (x - 22 sin z) .= l ~ h2"-J2"-ff22) e i (~ -° ' ]  (15) 

In order to sort out the terms corresponding to each 
frequency n, equation (15) is expanded again in a 
Fourier series with respect to z. This gives 

0 = (sinx)J02(22)+2Real sinx ~(2,~.)hm 

+Real~Isinx{2J°J2"+2~.=, ,.=1J,.(J,._2.h,. 

+ Jm+2.h*)} ei2~" +icos  x { -2JoJz~ l 

25- '  j j , i(2n-1)'~ + (m+(Zn-l)h,.-Jm-(:n-1)hm e =1 m 

(16) 

where the asterisks denote complex conjugates. After 
some manipulations, equation (16) becomes 

0 = sin x +  Real Co,kgksinx 

n=l  = --o~,k#O 

~2n-- 1 ,kNk ~ COS X 
k= -- oo,k~ 0 

with 

C~,k -- (-- 1)k+'2Jk(2;I.)J._k(22) (18) 

gk -- 1 - - Io ( f lX~/ )  (19) 

The final solution so obtained can be differentiated 
with respect to the radial coordinate or integrated over 
the section and/or time to identify the heat transfer 
characteristics. Based on these solutions, we will intro- 
duce a few different regimes according to the parameter 
values. 

3. RESULTS AND DISCUSSION 

3.1. Definitions 
For convenience of presentation, a few useful quan- 

tifies are derived from the foregoing solutions. 

(1) Seetion-averaged fluid temperature, (0), is simply 
obtained by integrating equation (17) over the cross- 
section : 

(0)  = sin x +  Reallk=~ I Co,k(gk) sin X 

n= 1 k=--~ ,k¢O 

"~ i k= - ~ , k  C2n- l'k ( gk ) e(2n- DJr COS X}l (20) 

where (gk) designates the section-average of Yk 

2 I1 (flx/~) 
(gk) = 1-- flX/~ io(flV/~). (21) 

This function has two asymptotes : 

l~ k2fl 4 +i-~ kfl 2 a s t i r 0  
(Ok > ~ (22) 

a s f l  --+ oo 

(2) Section-time-averaged fluid temperature, (0), is 
also obtained by further integrating equation (20) over 
the oscillation period (or simply by dropping out the 
unsteady terms of e i ' )  : 

(0)  = s inx+Real  I Co,@k)sinx . (23) 

(3) Wall heat flux, qw, is derived by differentiating 
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equation (17) with respect to ~/ and evaluating it at 
r / = l :  

00 

= Real[  ~-'. 1 1 -  *~' Coka'k.~ sinx 

C2.xgk e sin 
n = l  k =  ~ , k ¢ 0  

+i  ~= - ~,k,0 ~ Cz~- "kg; e'Z~ - 1'~" c°s x}]  

where g; --- d#k/dq(1). From equation (19), g2 becomes 

g~, =: - fl . (25) 

Similar to equation (22), it can be shown that g;~ is 
asymptotically expressed as 

I 1 2 4 , l  2 
- i~k  fl - l~kf l  a s t i r 0  (26) 

gk ~ -- fl~ k / ~ / 2 - - i f l ~  as fl -~ o~ 

(4) Time-averaged heat flux, t]w, is derived by inte- 
grating equation (2~) over the oscillation period : 

qw = Real [k=~ t Cosg'ksinx]. (27) 

(5) Nusselt number, NUD, is defined as 

2~/w 
NUD -- Ow -- (0)  

= - 2 " R e a  C0,k e a  C 0 ~  k . 
=1 

(24) 

(28) 

In what follows, the influence offl and 2 on the above- 
defined quantities is; addressed and physically distinct 
regimes are identified. 

3.2. Mean temperature 
The representative: temperature difference is expressed 

as 

(]5--0) = 0w - ( 0 } .  ( 29 )  

Figure 3 presents a bird's-eye view of the normafized 
temperature difference plotted in the fl-2 plane. As can 
be seen in Fig. 3, (A0} is very small in the vicinity of 
fl = 0.1. In fact, for small fl, equation (20) is approxi- 
mately reduced to 

( 0 ) ~  1 -  4 k2j  22 sinx 
= 

logo ~ ~ ... ~ % ~  

Fig. 3. Representative temperature difference. 

or 

-1 
+ i ¼ kf l  2 ) e i~ cos xJ + higher-frequency terms 

= (1 -~4fl422) sin x +  Real [ ( -  ~ fl22 

• 1 4 iz + l ~ f l  4) e cosx] +higher-frequency terms (30) 

- -  1 4 2 (A0} ~ ~fl 2 sinx. (31) 

Obviously when either fl or 2 is zero (i.e. fluid is at rest), 
equation (31) reduces to (A0} = 0; in other words, 
the whole fluid is at the same temperature as the wall. 
Focusing only on the primary frequency response, i.e. 
for n = 1, the second term in equation (30) reveals that 
the amplitude of fluid temperature variation is pro- 
portional to fl22 cos x for small ft. This is qualitatively in 
good accord with the findings of Gedeon [6] in which 
the amplitude of  fluid temperature variation is shown to 
be proportional to the product of r2 and wall tem- 
perature gradient. 

But whenfl  is fixed to a large value, Fig. 3 indicates 
that the (A0) curve shows ridges and grooves period- 
ically. Furthermore, for a very large r, (A0} undergoes 
oscillation with 2 and converges to a well-behaved curve 
of 1-J02(22). This can be explained with the aid of 
equation (20). Since (#~) ~ 1 for fl ~ oo, we have 

(0)  ~ s inx+Real  [ ~  Co.k sinx 
L k = l  

+.=~ ~ C2,j, e 2~ sin x 
= = - -  o o , k ~ 0  

-~-ik=~,k~oC2n--l,ke(2n-1)i~cosx}l 
= J~ (22) sin x + 2Jo (22)Real {J2.(22) ezra" sin x 

= 
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Fig. 4. Time-averaged heat flux. 

q 
+ i J2,_ 1 (22) e (z"- l)i~ COS X}I (32) 

and, subsequently, we obtain by time-averaging 

(0)  ~ j2(22) sinx (33) 

from which the representative temperature difference is 
derived as 

(A0) ~ {1-J0:(22)} sinx. (34) 

Eq__uation (34) implies that, when fl is sufficiently large, 
(A0) is a function of 2 only. It is further interesting to 
interpret equation (32) from the Lagrangian point of 
view. This can be done just by rewriting equation (32) 
in a compact form 

( 0 ) ~ n ~ a ,  ~ ~ sin (~+22sinf)  d f  (35) 

the right-hand side of which does not depend on time 
any more and can be interpreted as the time-average of 
the wall temperature experienced by a given f ind 
element (see equation (9)). As an element moves back 
and forth, it feels as if the wall temperature is varying 
with time. Here, the wall temperature variation per- 
ceived by an element is not a simple sinusoidal function 
of time any more. Equation (35) then gives the time- 
averaged value during one period, thereby indicating 
independence of the temperature of a moving element 
on time. Equation (35) can also be obtained directly 
from equation (13), which represents the fluid tem- 
perature in Lagrangian viewpoint. 

From the above discussion, it can be inferred that for 
large fl the heat transfer from the wall does not penetrate 
into the core part but prevails only within a thin annular 
space. Also, from the Lagrangian standpoint the section- 
averaged fluid temperature is hardly influenced by the 
wall conditions. 

3.3. Regime Map 
The time-averaged heat flux is calculated numerically 

from equation (27) and the results are shown in Fig. 4. 

100 

10 

M~ 

1 

0.1 
0.1 1 

Z 

Fig. 5. Projective plot of Fig. 4. 

10 

In doing this, each coordinate scale was deliberately 
chosen to clarify the influence of fl and 2 on qw- Prior to 
our discussion, it may be worthy of note that a com- 
bination of/3 and 2 was used as one of the coordinates. 
Actually, Fig. 4 was selected out of many trial plots 
owing to its lucidity. Based on this elegant plot, it was 
successful in identifying the presence of three distinct 
regimes, each of which appears as a tangential plane. 
The occurrence of the three regimes is also evidenced in 
Fig. 5, which is basically a top view of Fig. 4. For 
convenience, these regimes are referred to Regimes I, II 
and III, as shown in Fig. 5. As for the dependence of 
the Nusselt number on the process parameters, Fig. 6 
shows a 3D plot for Nu. It should be recognized that two 
different coordinates were used depending on whether 2 
is less than or greater than unity. It is perceptible that 
the Nusselt number has a weak dependence on 2 when 
the mixed coordinates are employed. This also sub- 
stantiates the occurrence of the three distinct regimes. 

As can be expected from Figs. 4 and 6, the heat 
transfers pertinent to each regime are substantially 
different from one another. Accordingly, presentation 

v"t//~o "t x'/ "" "~ 
,r ../.x 1 

Fig. 6. Nusselt number. 
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of our results will be made henceforth in conjunction 
with the regime map. 

3.4. Heat flux and Nusselt number 
For Regime I, the asymptotic behavior of the time- 

averaged heat flux can be shown from equations (26) 
and (27). Then NuD can be readily obtained from this 
heat flux and equations (28) and (31). The results are as 
follows. 

Regime I : 

qw ~ ~fl' ~. k2j2(22)sinx = 1/~4~2 sinx. 
k = l  

NUD ,~ 6. (36) 

For Regime II, using equations (26), (27) and (34), 
we can derive 

Regime II : 

qw ~ x/2fl ~ x/%JkZ(22) sinx 
k = l  

x/2/~k 2 sinx 

Nut, ~ 2 x/~flk z sinx ~ x//2fl. (37) 
{1 - J0Z (22)} sinx 

In the above, the asymptotic relations, J~(x) 
1-x: /2 and J~(x) ~ x2/4 for x << 1, were also used in 
the derivation. 

For Regime III, it is not easy to deduce some kind of 
asymptotic formulae, for qw. However, from our numeri- 
cal calculation, #w was found to be roughly proportional 
to x/~, i.e. 

Regime III : 

q,~ ~ x/2fl ~ x/kj2(22) sinx 
k = l  

0.76flv/2 sin x 

Nut, ~ 1.52flx/~. (38) 

From these results, it is evident that qw and thus NUD 
have different powers of dependency on fl and 2 in each 
regime. This is consistent with the presence of the regime 
map and may be one of the benefits of this work. 

Consider a limiting case of 2 << 1, which can be inter- 
preted as a fluid element traveling only a short interval 
out of the imposed wall temperature distribution. Then, 
an observer moving with the element would regard the 
wall condition as that with a constant axial temperature 
gradient. For this reason, the effective axial thermal flux 
for the case of 2 << 1 (obtained by integration of qw with 
respect to x) was found to agree well with the results of 
Kurzweg [5] for Pr ~< 1. 

3.5. Validity of regime map 
In this section, we address the physical aspects of the 

regime map by taking into account the length scales of 

interest. First of all, it is necessary to remark here three 
axial length scales as below : 

Ls : swept length of the oscillating flow 
Lw:characteristic length associated with the sinus- 

oidal wall temperature distribution 
Lc :conduction length scale, where Lc = (Ls~o)(R2/x). 

Of these three scales, Lc corresponds to the moving 
distance of a certain fluid element over the duration of 
transverse penetration time scale, (R2/rc). This length 
scale is similar to the entrance length in steady unidi- 
rectional laminar flow. 

For the problem considered here, it can be asserted 
that the shortest length scale would govern the heat 
transfer process. Actually, the regime map shown in Fig. 
5 can be alternatively established from the scale analysis : 

(i) Lc <<L~ Lc << Lw ~ f l  << 1 and fix//-2 << 1; 

Regime I 

(ii) L, <<L¢ Ls << L~--*fl >> 1 and )~<< 1; 

Regime II 

(iii) Lw << Lc Lw << Ls ~ flx/~ >> 1 and 2 >> 1 ; 

Regime III. (39) 

Being aware of the different length scales relevant to 
each regime, we decided to re-illuminate the original 
governing equation (4) so as to make an order-of-mag- 
nitude analysis between the transient, convection and 
diffusion terms. 

Table 1 summarizes the time and length scales and 
the renormalized equations corresponding to each 
regime. In Regime I (fl << 1 and flx/~ << 1), the unsteady 
term can be dropped out so that the convection term 
is balanced with the diffusion term. By contrast, the 
conduction term in Regime II (fl>> 1 and 2 << 1) 
becomes negligibly small and the unsteady term is com- 
parable to the convection term. It is further noted that 
fl is a predominant parameter. Nevertheless, in Regime 
III (fix//2 >> 1 and 2 >> 1), the general behavior is very 
close to Regime II, but flx/~ is more important than fl 
itself. Due to the presence of 2 in the argument of cosine 
function, flx/~ however is not a unique parameter to 
control the heat transfer. Table 1 shows that the effect 
of 2 in Regime III is relatively small since [cosxl ~< 1. In 
Regime III it is also notable that (2Lw)/@~oLs) was 
employed as a time scale rather than 1/o9. This is because 
the angular frequency of wall temperature variation 
experienced by a moving element is not 09 but ~o (Ls/Lw) 
due to the periodic distribution of wall temperature. 
Consequently, the thickness of the thermal boundary 
layer is determined by og(LJLw) and heat transfer is thus 
controlled by this value. 

4. CONCLUSION 

It has been investigated how the axially nonlinear wall 
temperature distribution influences the heat transfer by 
oscillating pipe flow. In order to do this the temperature 
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Table 1. Time scales, length scales and renormalized governing equations corresponding to each regime 

Length Time Representative Wall Nusselt 
scale scale Governing equation temp. diff. heat flux number 

Regime I L¢ ~ az +Tc°sr  ax o r/0r/ r/ ~4/7422 sinx il fl422 sinx 6 

1 2~0 I 2 O0 1 ~9 { 00~ 
Regime II Ls fl ~ ~ t I/~-~) 222 sin x 

) 2 1 Lw O0 1 ~ r / ~  sinx 0.76flx~sinx 1.52flxf2 Regime III Lw 7z ~o L~ Oz o c3x o rl dr 1 

field has been obtained especially with a sinusoidal wall 
temperature distribution. Through the analyses of the 
section-averaged temperature, the wall heat flux, and 
the Nusselt number, it has been revealed that the heat 
transfer is governed by two parameters, namely the 
dimensionless oscillation frequency and swept length 
ratio. It is found that the characteristics of heat transfer 
can be classified into three regimes with respect to these 
parameters as follows : 

Regime I (17 << 1 and flw/2 << 1). Because the effect of 
unsteady term is small, the quasi-steady assumption is 
valid. 

Regime H (fl >> 1 and 2 << 1). The region affected by 
conduction effect is confined in the vicinity of wall and 
the unsteady term is balanced with convection term in 
the core region. The thickness of thermal boundary layer 
is determined by oscillation frequency. 

Regime I l l  (17~22 >> 1 and 2 >> 1). Though the overall 
characteristics of heat transfer are similar to that of 
Regime II, the thickness of thermal boundary layer is 
determined by the product of the oscillation frequency 
and the swept length ratio rather than by the oscillation 
frequency itself. 

Since the governing equation considered in this study 
is homogeneous and linear, it allows for the super- 
position principle to be applicable. Therefore, as long as 
the model equation used in this study remains valid, the 
present results are directly applicable to more com- 
plicated wall temperature boundaries. This is because a 
general wall temperature distribution can be expanded 
in a Fourier series and thus the relevant solutions can 
be found. 
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A P P E N D I X  

The analysis of heat transfer by oscillatory flow in a pipe 
having finite wall thickness and constant wall temperature 
gradient was carried out by Kaviany [9]. The solutions of 
Kaviany can be rearranged as follows. 

The temperature is 

T - T o =  

Z s 
7 (Z - Zo + --~ Real [gt (q) e'z] ) 

for0 ~< ~/~< 1 

7tZ--Zo + ~- Real[g.(.) e 1) 

forl ~<r/~< 1+5 

(AI) 

in which To is the section-time averaged temperature at z = z0, 
7 is the axial gradient of the wall temperature distribution and 
5 is the ratio of the wall thickness to the inner radius of the 
pipe. The temperature profile functions were obtained as below. 

g' = ( 1 -  prm Io( ,/b-2 , 
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( lo(c~v/iO Io([3~/i0 J 

iBa~/ilo (~V/b 

g~ ( l _ Pr) {o~x/Zllo(o~v/~O_ 21, (o~,,/~O } 

(J, ( f l ~ ( 1  +6)) K, C6x/~(1 + 5))) 

where a is the thermal diffusivity ratio of fluid to wall and K.(z) 
is the second kind of  :modified Bessel function of order n. The 
coefficients A and B are given by 

#~P~/' ( ~ ) -  a~/'~ 

A - 1° (av/b (A4) 
# I, (fl~/i) _ a x / ~  

I, (fl~/i) ~ I, ( ~ )  
B = b #l°(flx/:l----)) -#x/rrl°(ctV/:l-----) (A5) 

I, (fl,~lK, (&/i~(1 +~11 
-I, (B~/i~(1 + ~))K, (fl,fi~) 

a = (A6) 
;0 (~,~)K, ~ ( 1  +Z)) 

+ t ,  (flv/~(1 + 6))K0 (flx/~) 

b = I1 (fl , /~(1 +3))K, ( f l . ,~ ( l  + 6)) (A7) 

Io~8x/~)K , (fl.~/~(1 +3)) 

+~ Co,/~(1 +,))/¢(&/~) 

where # is the thermal conductivity ratio of fluid to wall. The 
wall heat flux can be obtained by differentiating equation (A1) 
with respect to t /and evaluating it at q = 1. 

To verify the influences of the thermal properties of the wall, 
we consider the asymptotic behaviors of  the section-averaged 
temperatures and wall heat flux. These behaviors are given in 
the form of the section averages ofg ' s  and the radial gradient 
ofgf  at t / =  1. 

For small t ,  (gf), (gw) and g~ can be approximated as 
below : 

1 
(g,.) ~ _~flz + i 1 + Cr (A8) 

1 
(gw) ~ i 1 + ~  (A9) 

where Cr is defined as 

which is reduced to 

1 Cr 
g~ ~ ~ ,--7~-~ fl 2 (A10) 

C, - a{(6+ 1) 2 - 1} (A11) 
# 

C r -  (I¢~-R2)pwc~ (Ale) 
R2prcpr 

and represents the ratio of the thermal capacity of the fluid to 
the wall at a cross section. 

In the limiting case of large t ,  (gf), (gw) and g~ can be 
written as 

(gr} ~ i (A13) 

(g~)  ~ ~ f l - '  (A14) 
Cr(x/ Pr + 1) 

g ~  ~ fl fora/#2 >> 1. (A15) 
, ~ + l  

From the above equations it can be shown that when Cr >> 1 
the oscillation of the wall temperature is much smaller than 
that of  the fluid temperature for both limiting cases of  small 
and large ft. Since Cr generally has a large number around 
102 ~ 104 for a gaseous fluid and a metallic pipe of  small radius, 
the wall temperature can be considered to maintain a constant 
value w ~ a r d l e s s  of the flow oscillation. When fl is less 
than ~/6/(1 + Cr), however, the oscillation of the fluid tem- 
perature becomes similar to that of the wall temperature. 
Hence, the oscillation of the wall temperature cannot be neg- 
lected for very slow oscillation in which fl < ~ .  

When fl is larger than unity, there can exist a thermal bound- 
ary layer within the wall and the inner surface temperature 
differs from the section-averaged wall temperature if the con- 
ductivity of the wall is not sufficiently larger than that of the 
fluid. The amplitude ratio of the inner surface temperature to 
the section-averaged fluid temperature can be approximated as 

Igfl, = ,I 1 
~-(1 + . / ~ r ) .  a/~u: - ~ v  ,. f o r t  >> 1. (A16) 

I(gf)[ 

However, a/#: is usually very large for a gaseous fluid and 
a metallic wall. And thus the variation of the inner surface 
temperature can be neglected compared with that of the fluid. 

The above equations can be also utilized to shed light on the 
influence of the Prandtl number. As shown in equations (A8)- 
(A10), Pr has a completely diminishing influence for small ft. 
But when fl is more or less above the unity, the characteristics 
of heat transfer are affected by the value of  the Prandtl number. 
The influence of the Prandtl number, however, is meager for 
Pr < 1, because of the dependence on 1/(1 +x/Pr) ,  as can be 
seen in equations (A14) and (A15). Therefore the case ofPr < 1 
might be approximated as the case of a vanishing Pr. 


